当前位置:中国民航大学 >> 中国民航大学理学院 >> 教师信息 >> 高有简介

高有简介

 发布时间:2020-04-23 16:04:15     发布部门: 中国民航大学理学院

 个人基本信息

出生日期: 19667

籍贯: 河北省张北县

性别: 

民族: 

专业技术职务:教授

最高学历:博士研究生

工作单位:中国民航大学理学院

通信地址:天津市,中国民航大学南院理学院

邮政编码:300300

  话:022-24092510 ()
电子邮箱:gao_yoou@263.nety-gao@cauc.edu.cn

 

学习和工作经历简介

2019/09 – 至今,中国民航大学,理学院,教授,院长;

2009/01 – 2019/09,中国民航大学,理学院,教授,副院长;

2002/06 – 2018/12 中国民航大学,理学院,教授;

2001/01 – 2002/06 东北电力学院,基础教学部,教授;

1996/11 – 2000/12,东北电力学院,基础教学部,副教授;

1994/01 – 1996/11,东北电力学院,基础教学部,讲师;

1992/07– 1994 /01  东北电力学院,基础教学部,助教;

1991/07– 1992/07  东北师范大学 数学系 助教

2000/03–2003/01  哈尔滨工业大学 基础数学专业 博士研究生

1988/09 – 1991/07 东北师范大学,基础数学专业,硕士研究生;

1984/09 1988/07 内蒙古民族师范学院,数学专业,学士。

 

课程教学(本科、研究生课程)

主讲本科生课程:信息与编码、线性代数、数学学科导论课

主讲研究生课程:纠错码的代数理论、典型群的几何学

天津市精品课程《线性代数》课程负责人

天津市教学团队《代数类课程群教学团队》负责人

天津市重点学科负责人

 

四、学术兼职

第五届天津市学位委员会学科评议组成员

天津市大学生数学建模竞赛组委会成员

校学术委员会委员

 

荣誉称号与获奖

  2015年获第九届天津市高等学校教学名师奖

  2009年被评为天津市优秀教师

  2008年被评为中国民航大学校级教学名师

  2008年被评为中国民航大学优秀教师标兵、海航园丁二等奖

  2017年荣获第十四届“挑战杯”天津市大学生课外科技作品竞赛优秀指导教师

 

主要研究方向和科研业绩

研究方向:代数、编码与密码

科研项目:

1.认证码的构造及其相关组合问题的研究,国家自然科学基金面上项目,2012.01—2015.12,主持。

2.民航信息安全系统中认证技术的理论基础研究,国家自然科学基金民航联合基金,2008.01—2010.12,主持。

3.民用航空发动机状态监测与故障诊断基础理论及关键技术研究,国家自然科学基金重点项目,2013.01—2016.12,参与

4.Pooling设计和压缩感知矩阵的构造及其相关问题的研究,国家自然科学基金青年科学基金,2018.01-2020.12,参与。

5.认证码的构造及其相关问题的研究,天津市自然科学基金,2008.042011.03,主持。

 

 论著目录
代表性学术论文

1.高有,牛敏瑶,王刚. The Construction of Orbit Codes Based on Singular Linear Space over Finite FieldsJournal of Combinatorial Mathematics and Combinatorial Computing2019,108,245-257

2.高有,牛敏瑶.  Two constructions of asymptotically optimal codebooks according to the welch boundApplied Mathematics and Computation2019348167–174

3.高有,牛敏瑶,仝丰华. Constructions of 1 1/2-designs based on singular symplectic spaceJournal of Combinatorial Mathematics and Combinatorial Computing2018,107, 233-24

4.高有赵立云. Construction of optimal codes with fixed parameters in  projective spaceJournal of Combinatorial Mathematics and Combinatorial Computing2018,105,93-103

5.高有,薛艳艳,肖玉婷,刘雪梅. Lattices Generated by Joins of the Flats in Orbits under Finite Affine-singular Symplectic Group and its Characteristic Polynomials, Acta Mathematicae Applicatae Sinica, English Series, DOI: 10.1007/ s10255-017-0707-92017, 334):919–932

6.高有,赵立云. Construction of Constant Dimension Codes in Some CasesJournal of Combinatorial Mathematics and Combinatorial Computing2017,100283-295

7.高有,仝丰华,张晓娟. Construction of compressed sensing matrixes based on the singular pseudo-symplectic space over finite fieldsThe Journal of China Universities of Posts and Telecommunications2016,236):82-89

8.高有,赵立云,王刚. Bounds on subspace codes based on totally isotropic subspaces in unitary spacesDiscrete Mathematics, Algorithms and Applications Vol. 8, No. 4 (2016) 1650056 (14 pages) World Scientific Publishing Company DOI: 10.1142/S 17938 3091 65 00567

9.高有,王刚. Q-analogs of covering designs and steiner systems based on singular linear space, Journal of Combinatorial Mathematics and Combinatorial Computing201697, 51-63

10.高有,张晓娟. Constructions of compressed sensing matrices based on the subspaces of symplectic space over finite fieldsJournal of Algebra and Its Applications2016152):1650025 (16 pages)DOI: 10.1142/ S0219498816500250

11.高有,王刚,贺一凡. A New Construction of Multisender Authentication Codes with Simultaneous Model from Singular Symplectic Geometry over Finite Fields, Ars Combinatoria201511895-107

12.高有,王刚. Error-correcting codes in attenuated space over finite fieldsFinite Fields and Their Applications,2015,33103-117

13.高有王刚. Bounds on Subspace Codes Based on Subspaces of Type (m,1) in Singular Linear Space, Journal of Applied MathematicsVolume 2014, Article ID 497958, 9 pages http://dx.doi.org/10.1155/2014/497958

14.高有,薛艳艳. Association schemes based on the subspaces of type (2,0,1) in singular symplectic space over finite fieldsArs Combinatoria2014116101-119

15.高有贺一凡. Two Constructions of Multireceiver Authentication Codes from Singular Symplectic Geometry over Finite FieldsJournal of Combinatorial Mathematics and Combinatorial Computing201489, 197-213EI: 20142417823164 ISSN: 0835-3026

16.高有,张晓娟,薛艳艳. Association schemes based on singular linear spaces and its applicationsLinear Algebra and its Applications2014,453125-140

17.高有,刘艳琴,贺一凡. Linear Authentication Codes over Finite Local Rings黑龙江大学自然科学学报,2013305):566-569

18.高有,刘艳琴. The Construction of A3-Code from Projective Spaces over Finite Fields, WSEAS Transactions on Mathematics, 2013, 12(10):43-52

19.高有,贺一凡. Association schemes based on the subspaces of type () in singular symplectic space over finite fieldsLinear Algebra and its Applications2013,43911):3435-3444

20. 高有,贺一凡. Association schemes based on singular symplectic geometry over finite fields and its applicationLinear Algebra and its Applications2013,4381):549-558

21.高有,常利伟. A New Construction of Authentication Code with Arbitration from (2 nu+2+l)-dimensional Singular Pseudo-Symplectic SpaceArs Combinatoria2012107247-256

22.高有,常利伟. A New Construction of A2 Authentication Codes from Singular Pseudo-Symplectic Geometry over Finite FieldsJournal of Combinatorial Mathematics and Combinatorial Computing201281, 65-80

23.高有,常利伟. Two New Constructions of Multi-receiver Authentication Codes from Singular Pseudo- Symplectic Geometry over Finite Fields, WSEAS Transactions on Mathematics, 2012, 11(1):43-52

24.高有,余化枫. Some New Constructions of Authentication Codes with Arbitration and Multi-Receiver from Singular Symplectic Geometry, Journal of Applied Mathematics, Volume 2011, Article ID 675484, 18 pages doi:10.1155/2011/675484

25.高有,霍立群. 利用有限域上辛几何构造一个新的带仲裁的认证码,工程数学学报,2011,285):629-641

26.高有,冯晶. 利用奇异酉几何构造新的带仲裁的认证码,高校应用数学学报,2011261):89-94

27.高有,付信志.Lattices generated by orbits of subspaces under finite singular orthogonal groups IFinite Fields and Their Applications,2010,166):385-400SCI671QW ISI:000283524700001EI20104213313140

28.高有,余化枫. Lattices Generated by joins of the Subspaces in Orbits under Finite Singular symplectic GroupsII,黑龙江大学自然科学学报,2010271):5-12

29.高有,付信志. Lattices Generated by joins of the Subspaces in Orbits under Finite Singular symplectic Groups I,黑龙江大学自然科学学报,2009265):561-571

30.高有,吴建广. Construction of Cartesian Authentication Codes over Symplectic SpacesJP Journal of Algebra, Number Theory and  Applications2009, 13(2): 171-183

31.高有,许娟. Lattices Generated by Orbits of Subspaces under Finite Singular Pseudo-symplectic Groups ILinear Algebra and its Applications, 2009, 431(9): 1455-1476

32.高有,许娟. Lattices Generated by Orbits of Subspaces under Finite Singular Pseudo-symplectic Groups IIFinite Fields and Their Applications,2009,153:360-374

33.高有, 王红丽. Construction of Authenticatio n Codes with Arbitrationfrom Singular Pseudo-Symplectic Geometry over Finite FieldsJournal of Mathematical Research & Exposition2009291):9-18

34.高有,石新华,王红丽. 利用有限域上奇异辛几何构造具有仲裁的认证码,南开大学学报,2008416:72-77

35.高有,陶亚媛. 利用有限域上交错矩阵构造Cartesian认证码,高校应用数学学报,2007,22(4):385-390

36.高有. 有限局部环上酉群阶的计算,数学物理学报,2005254):564-568

37.高有. Lattices Generated by Orbits of Subspaces under Finite Singular Unitary Groups and Its Characteristic Polynomials. Linear Algebra and its Application, 2003, 368: 243-268

38.    高有, 游宏. Lattices Generated by Orbits of Subspaces under Finite Singular Classical Groups and Its Characteristic Polynomials. Comm. Algebra, 2003, 31(6): 2927-2950

 



相关文章
[教师信息] 郭英[2016-11-29 10:55:16]
[教师信息] 才华[2016-11-29 10:55:00]
[教师信息] 安冬敏[2016-11-29 10:54:20]
[教师信息] 麻世高[2016-11-27 19:05:51]
[教师信息] 韩建华简介[2020-09-07 14:31:26]
[教师信息] 耿伟鉴简介[2020-05-13 14:25:42]
[教师信息] 张斌简介[2020-05-13 14:25:01]
[教师信息] 高永馨[2016-11-27 19:04:41]